Posts Tagged ‘bigbangprints’

Big Bang Monday: DNS Pulsar

Monday, May 4th, 2015

DNS in this case stands for “double neutron star” and a pulsar in the widest known orbit around another neutron star was discovered by two high school students.

In the summer of 2012, during a Pulsar Search Collaboratory workshop, two high-school students discovered J1930−1852, a pulsar in a double neutron star (DNS) system. Most DNS systems are characterized by short orbital periods, rapid spin periods and eccentric orbits. However, J1930−1852 has the longest spin period (Pspin∼185 ms) and orbital period (Pb∼45 days) yet measured among known, recycled pulsars in DNS systems, implying a shorter than average and/or inefficient recycling period before its companion went supernova. We measure the relativistic advance of periastron for J1930−1852, ω˙=0.00078(4) deg/yr, which implies a total mass (Mtot=2.59(4) M⊙) consistent with other DNS systems. The 2σ constraints on Mtot place limits on the pulsar and companion masses (mp1.30 M⊙ respectively). J1930−1852’s spin and orbital parameters challenge current DNS population models and make J1930−1852 an important system for further investigation.

A P–P˙ diagram showing all pulsars in DNS systems (stars/squares) and all other known pulsars (dots). Measured P and P˙ come from the ATNF Pulsar Catalog (Hobbs et al. 2004) and lines of characteristic age and surface magnetic field are shown with dot-dash and dashed lines, respectively. Recycled DNS pulsars (stars) appear between the normal and millisecond pulsar populations and are listed in Table 2. Despite its significantly longer spin period, J1930−1852 clearly belongs in the population of recycled DNS pulsars, unlike J1906+0746 and J0737−3039B (squares) – neither of which have undergone recycling.

With so many astronomers engaged in this type of work, it’s inspirational to find younger ones with no inhibitions and lots of hope continues to reap the rewards of discovery.




Be A Giant

Friday, November 7th, 2014

I smell the blood of an Englishman,
Be he live, or be he dead
I’ll grind his bones to make my bread.

That’s your new mantra at home — after you buy one of Florian Pucher’s Landcarpets. The carpets are based on actual satellite images. They’re not cheap, but they are unique.

So what do you do with ceilings? A Big Bang Print is probably a good idea. Costs less, too.

Big Bang Monday: The White Hole

Monday, August 11th, 2014

Check out this abstract

While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical big bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the big bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5d bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: The universe emerges as a spherical 3-brane out of the formation of a 5d Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of 20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) AdS/CFT description of the cosmological big bang.

Got your head wrapped around it yet? Probably not. Our friends at Science Daily explain it a little more…

What we perceive as the big bang, they argue, could be the three-dimensional “mirage” of a collapsing star in a universe profoundly different than our own.

“Cosmology’s greatest challenge is understanding the big bang itself,” write Perimeter Institute Associate Faculty member Niayesh Afshordi, Affiliate Faculty member and University of Waterloo professor Robert Mann, and PhD student Razieh Pourhasan.

Conventional understanding holds that the big bang began with a singularity — an unfathomably hot and dense phenomenon of spacetime where the standard laws of physics break down. Singularities are bizarre, and our understanding of them is limited.

“For all physicists know, dragons could have come flying out of the singularity,” Afshordi says in an interview with Nature.

The problem, as the authors see it, is that the big bang hypothesis has our relatively comprehensible, uniform, and predictable universe arising from the physics-destroying insanity of a singularity. It seems unlikely.

So perhaps something else happened. Perhaps our universe was never singular in the first place.

Their suggestion: our known universe could be the three-dimensional “wrapping” around a four-dimensional black hole’s event horizon. In this scenario, our universe burst into being when a star in a four-dimensional universe collapsed into a black hole.

In our three-dimensional universe, black holes have two-dimensional event horizons — that is, they are surrounded by a two-dimensional boundary that marks the “point of no return.” In the case of a four-dimensional universe, a black hole would have a three-dimensional event horizon.

In their proposed scenario, our universe was never inside the singularity; rather, it came into being outside an event horizon, protected from the singularity. It originated as — and remains — just one feature in the imploded wreck of a four-dimensional star.

The researchers emphasize that this idea, though it may sound “absurd,” is grounded firmly in the best modern mathematics describing space and time. Specifically, they’ve used the tools of holography to “turn the big bang into a cosmic mirage.” Along the way, their model appears to address long-standing cosmological puzzles and — crucially — produce testable predictions.

Of course, our intuition tends to recoil at the idea that everything and everyone we know emerged from the event horizon of a single four-dimensional black hole. We have no concept of what a four-dimensional universe might look like. We don’t know how a four-dimensional “parent” universe itself came to be.

But our fallible human intuitions, the researchers argue, evolved in a three-dimensional world that may only reveal shadows of reality.

They draw a parallel to Plato’s allegory of the cave, in which prisoners spend their lives seeing only the flickering shadows cast by a fire on a cavern wall.

“Their shackles have prevented them from perceiving the true world, a realm with one additional dimension,” they write. “Plato’s prisoners didn’t understand the powers behind the sun, just as we don’t understand the four-dimensional bulk universe. But at least they knew where to look for answers.”

Still interested? I bet you are! Read more here. Relax: there’s a video on the Perimeter Institute site.

Big Bang Monday: 10 Years Gone for Cassini

Monday, June 30th, 2014

Today marks ten years since the Cassini spacecraft arrived at Saturn. The image above is one of my personal favorites (similar images also available via

The team of scientists at Cassini have selected their own “top 10” list of images. More importantly, their list of the top ten discoveries is far more impressive…

  1. The Huygens probe makes first landing on a moon in the outer solar system (Titan)
  2. Discovery of active, icy plumes on the Saturnian moon Enceladus
  3. Saturn’s rings revealed as active and dynamic — a laboratory for how planets form
  4. Titan revealed as Earth-like world with rain, rivers, lakes and seas
  5. Studies of the great northern storm of 2010-2011
  6. Radio-wave patterns shown not to be tied to Saturn’s interior rotation as previously thought
  7. Vertical structures in the rings imaged for the first time
  8. Study of prebiotic chemistry on Titan
  9. Mystery of the dual bright-dark surface of Iapetus solved
  10. First complete view of the north polar hexagon and discovery of giant hurricanes at both of Saturn’s poles

I love the preview of what we can expect in the coming years…

Big Bang Monday: Saturnian Encounter

Monday, May 19th, 2014

What if Saturn was only a million kilometers away? The gravity would kill us all.

If you’re curious, click on the video by Yeti Dynamics.

Saturn’s rings were created using Voyager data and Cassini Data, and tables from the IAU, and NASA Interestingly enough, the Voyager data and Cassini data did NOT completely match each other. More interestingly, the differences between the two data sets were not consistent along the ring, specifically the small Gaps along the rings are inconsistent between Voyager and Cassini. There are 3 conclusions I can reach from this,
1. the data is simply not perfectly accurate,
2. I interpreted the data incorrectly,
3. the Rings have actually changed a bit between voyager and cassini.

To create the rings, I interpolated between the two data sets, so the rings are a mix between Voyager and Cassini data, there are multiple textures used, for scattering, translucency, transparency, and color, I think I probably have some of the highest resolution textures in use anywhere on the web(over 19k pixels across).

In Part 1, (the 2d blue print video) the Planets are all correctly scaled to each other, except the SUN.. The Orbits are also all correctly scaled to each other (except the Moon’s). However, the planet size, and the planet orbits are not scaled to each other. The orbital speeds are also all correct relative to one another,

In part 2, The illumination between the moon and Saturn is reasonably accurate, in case you didn’t understand. This is Saturn as Far away as the closest approach mars would get

In Part 3, the meteors ramp up and down in response to going through the very distended outer rings E, and G

The Meteors are Greenish, I’ve actually seen a Number of large daylight meteors, all of them had flashes of green and blue, The velocity and direction they are in the video is accurate to the motion of Saturn in this video

This will.. never never ever happen, ever (probably).

Hat tip: Bad Astronomer

Now’s a really good time to view Saturn.

Of course, the best way to get Saturn up on your wall, permanent-like, is to get a Big Bang Print.

Big Bang Monday: Meteors Showers Predicted

Monday, May 12th, 2014

Get ready, watchers of the skies!

Periodic Comet 209P/LINEAR is predicted to put on a show for us.

Preliminary results by Esko Lyytinen and Peter Jenniskens, later confirmed by other researchers, predict 209P/LINEAR may cause the next big meteor shower which would come from the constellation Camelopardalis on the night of 23/24 May 2014. There may be 100 to 400 meteors per hour. All the trails from the comet from 1803 through 1924 may intersect Earths orbit during May 2014. The peak activity is expected to occur around 24 May 2014 7h UT when dust trails produced from past returns of the comet may pass 0.0002 AU (30,000 km; 19,000 mi) from Earth.

This April 30, 2014 image was taken using the NASA Marshal Space Flight Center 20″ telescope located in New Mexico. A 3-minute exposure, it shows 14th magnitude Comet 209P/LINEAR shining faintly among the stars of Ursa Major. At the time of this image, 209P was just over 40 million km from Earth, heading for a relatively close approach (8.3 million km) with us on May 29, 2014.

Image credit: NASA/MSFC/Bill Cooke

Big Bang Monday: Milky Way 360º

Monday, March 24th, 2014

spitzer 360

Very cool, yet incomprehensible. A 360º view of the Milky Way galaxy, composed of more than 2 million images. Not very pretty, is it? Well, you can win them all — but the sheer magnitude of this piece of work is pretty wild.

That’s astronomy for you: deeper than your deepest imagination. Never ceases to amaze most of us: there are more galaxies out there than there are stars in the Milky Way.

W T F ?!?

OK, now get this. You can put some of this “WTF?!?” up on your wall. Go check out and order some for yourself, or your spouse, boss, kids, etc. Go ahead: make their day!

Big Bang Monday: Hubble’s Top 100 Images

Monday, October 1st, 2012

Fantastic collection of the Hubble Space Telescope’s “Top 100 Images” on the ESA site. All beautiful, with some more interesting that others. For example, the “engraved hourglass nebula” or MyCn18

This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard the Hubble Space Telescope (HST).

This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of ‘etchings’ in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue).

The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen.

Credit: Raghvendra Sahai and John Trauger (JPL), the WFPC2 science team, and NASA/ESA